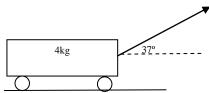
Name: Period:


Kinetic Energy KE = ½ m v²

1. A man pushes an 800kg car from rest a distance of 100m and gets it rolling at 3m/s.	How
much KE does the car gain?	

2. How much KE does a bullet have if it has	a mass of 0.5g and	is traveling at a speed of
250m/s?	-	

3.	The KE of a	1.4kg cart tha	at is moving at 0.5m/s is	
----	-------------	----------------	---------------------------	--

- 4. If the mass of the cart above is doubled and the speed stays the same the KE will be _____.
- 5. Using a complete sentence state the relationship between speed and KE.
- 6. A 7000g cart starts at rest. How fast will it be moving after it is given 1000J of kinetic energy?
- 7. The cart in the previous problem is given another 1000J of kinetic energy. Find its new speed.
- 8. A 2000kg car is initially traveling at 8m/s. The car slows down to 5m/s. How much kinetic energy did the car lose?
- 9. A 20N force pulls a 4kg cart at an angle of 37°. How much kinetic energy will it have after it has traveled 12 m?

